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Abstract. The N-Person Iterated Prisoners’ Dilemma (N-IPD) is an
excellent environment to explore collaboration. This paper shows that
the voting mechanism is crucial in determining whether sets of agents
collaborate, or defect. When each agent can vote against each other agent
individually, the agents become cooperative much more easily, ascending
the Collaborative Hill. When the agents vote against have only one vote
each round, they tend to defect, descending into the Tragic Valley. This
is shown with static decision policies, and with policies that learn using
reinforcement learning. Fortunately, when agents retain enough history,
they can become collaborative even with one vote each round. This is all
due to the shape of the reward space.

Keywords: N-Person Prisoners’ Dilemma · Reinforcement Learning ·
Emergence of Cooperation · Multi-Agent Systems.

1 Introduction

The Prisoners’ Dilemma (PD) serves as a foundational paradigm in game theory,
illustrating the conflict between individual rational self-interest and mutually
beneficial collective action [1]. In its simplest form, two individuals, unable to
communicate, must independently choose whether to cooperate or defect. While
mutual cooperation yields a good outcome for both, each agent has an individual
incentive to defect, often leading to both defecting, which yields a poor outcome
for both. The Iterated Prisoners’ Dilemma (IPD), where the game is played
repeatedly, opens the door for cooperation to emerge through strategies based
on reciprocity, as famously demonstrated by Axelrod’s tournaments where Tit-
for-Tat proved remarkably successful [1].

However, many real-world social and economic dilemmas—ranging from man-
aging common resources to international climate agreements—involve more than
two interacting parties. The N-Person Iterated Prisoners’ Dilemma (N-IPD) gen-
eralizes the IPD to scenarios with N agents [2,3].

This paper first provides a brief background on the N-IPD and relevant learn-
ing approaches (section 2). It then describes simulations with static policies (sec-
tion 3) and simulations with reinforcement learning (section 4). Section 5 is a
brief discussion of simulations that enable systems with neighbourhood voting
to escape the Tragic Valley. This is followed by a discussion and conclusion.
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2 Background and Related Work

This section briefly reviews some key concepts from game theory, focusing on
the N-Person Prisoners’ Dilemma (N-IPD), and introduces the common agent
strategies and Multi-Agent Reinforcement Learning (MARL) approaches rele-
vant to this paper.

2.1 The Prisoners’ Dilemma

The Prisoners’ Dilemma [4,1] is a widely used to study collaboration. There are
two prisoners and they are given the option to turn the other in. So both have
the option to collaborate, and not turn the other in, or defect and turn the other
in. That is each has a choice C or D. Each is given a reward based on their
decision and the decision of the other. If they both collaborate, they both are
given R, a reward. If both defect, they are both given P , a punishment. If one
defects, and the other collaborates, the defector is given T , a temptation, and
the collaborator is given S, a sucker’s payoff.

Prisoner 1

Prisoner 2

Collaborate Defect

Collaborate R1,2 T1S2

Defect T2S1 P1,2

Table 1. The table represents the outcomes for the four scenarios when two prisoners
vote. When both collaborate, both get R, and when both defect, both get P . When one
collaborates and one defects, the defector gets T and the collaborator gets S payoff.

Axelrod and Hamilton [1] restrict the values so that equations 1 and 2 are
followed. A standard set of values, used below, is T = 5, R = 3, P = 1 and
S = 0.

T > R > P > S (1)

R > (S + T )/2 (2)

The IPD merely plays the tournament over and over. This gives the agents
a chance to develop their own policy.

The Tit-for-Tat (TFT) strategy proved to be most successful. The strategy
is to collaborate when the opponent collaborates, then defect in the round after
they defect. Note that the TFT strategy is not a Nash equilibrium [5], indicating
that it can make cooperation difficult to maintain [6].



2.2 The N-Person Prisoner’s Dilemma (N-IPD)

The Iterated Prisoners’ Dilemma (IPD[) serves as a model for understanding
cooperation. While Axelrod’s work highlighted the success of TFT, extend-
ing strategies like TFT from two-agent encounters to multi-agent scenarios (N-
Person IPD or N-IPD) reveals a more complex strategic landscape [7]. In the
N-IPD, the overall reward increases linearly as the number of collaborators in-
crease [8]. However, in any round the individual reward is greater when the agent
defects. No matter what votes the other agents make, the payoff is higher for
any agent to defect in on round than to collaborate.

When there are N agents (and they all have only one vote), an individual
agent’s payoff is determined by its own choice and the total number of other
agents in the group who chose to cooperate. This structure represents scenarios
where individual actions contribute to a shared outcome, and direct one-to-one
reciprocity is obscured. The payoff for an agent who cooperates is calculated by
equation 3 and one that defects is calculated by equation 4, where noc is the
number of other cooperators. T , R, P , and S are the same as the two agent
dilemma, and the simulations below use the default values, T = 5, R = 3, P = 1
and S = 0.

S + (R− S)× (noc/(N − 1)) (3)

and for a defector as equation

P + (T − P )× (noc/(N − 1)) (4)

There are two distinct interaction models in N-IPD environments. The first
is the pairwise voting model. In this setup, agents can vote for each of the other
N − 1 agents. This is, in essence, a series of independent two agent IPD games.
Each round each of the N agents plays against the N − 1 others. An agent’s
total score is the sum of payoffs from all its interactions. This model emphasizes
direct, one-to-one accountability, where the actions of one agent in a pair directly
affect the other, and responses can be specifically targeted.

The second is the neighbourhood voting model. All N agents make a single
choice (cooperate or defect) simultaneously as part of one collective group. In
this case payoff comes directly from equations 3 or 4.

2.3 Agent Strategies and Adaptations

There are several static policies that are used in the simulations below. They
are static in the sense that they perform by the same rules each time. These are
the always collaborate strategy, the always defect strategy, the random strategy,
and the TFT strategy. The random strategy just flips a coin to decide whether
to collaborate or defect. In the N-Person game the Tit-for-Tat (TFT) strategy
makes a probabilistic decision based on the number of collaborators in the last
round. That is, if the number of collaborating agents in the prior round is κ,
and there are N − 1 other agents, the TFT agents randomly selects collaborate



κ/(N−1) of the time. An additional variant of the TFT agent, the TFT-E agent,
explores; that is, a given percentage of the time, the TFT-E agent merely flips
a coin to determine whether it collaborates or defects.

2.4 Reinforcement Learning in Multi-Agent Systems (MARL)

Reinforcement Learning (RL) is a class of machine learning where agents learn
to make sequences of decisions by interacting with an environment and receiving
feedback in the form of rewards or punishments [9]. Standard Q-Learning is a
foundational RL algorithm that learns the value of taking a particular action
in a given state. However, when applied to multi-agent systems, where multiple
agents are learning simultaneously, standard RL algorithms face significant chal-
lenges, primarily due to the non-stationarity of the environment; each agent’s
policy changes as it learns, thereby changing the environment from the perspec-
tive of other agents [10]. This can destabilize learning and prevent convergence
to cooperative equilibria. To address these issues within the N-IPD context, prior
work has explored more advanced multi-agent reinforcement learning (MARL)
techniques like Hysteretic Q-Learning [11] and WoLF-PHC [12], which aim to
endow agents with more sophisticated learning capabilities.

Q-learning [13] is a system that learns by building a table of results from prior
experience, called a Q-table. For example, in section 4, three agents participate,
and make decisions. If one is a Q-learning agent, it can build a table of, for
example, the last two rounds. Each round has eight possible outcomes 23, so
there are 26 = 64 cells to fill. Additionally, the Q-learning agent has an explore
option, so that no matter what the tables say, it will try a random move a small
percentage of the time.

Another parameter in the Q-learning update rule is the discount factor This
value, set between 0 and 1, determines the present value of future rewards, pri-
oritising immediate gratification over long-term gains. An agent with a discount
factor of 0 only optimizes for the immediate reward of the current action. Con-
versely, a discount factor approaching 1 causes the agent to weigh future rewards
heavily enabling it to learn more long-term strategies. A sufficiently high dis-
count factor is often a necessary precondition for a learning agent to overcome
the immediate incentive to defect and discover the long-term benefits of collab-
oration [9].

3 The Collaborative Hill and the Tragic Valley

The simplest extension to the two person IPD is the three person IPD. Simula-
tions on this task show that the voting mechanism largely determines whether
the agents converge on a cooperative solution (the Collaborative Hill) or whether
they defect (the Tragic Valley).

The first set of simulations uses pairwise voting, and tournaments are run
with agents with static policies. Fifty rounds are performed on all of the com-
binations of agents with the static policies of always defect, always collaborate,
Tit-for-Tat (TFT), Tit-for-Tat with exploration (TFT-E), and random.
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Fig. 1. Results from four static 50 round tournaments with pairwise voting. 3-TFT
refers to 3 Tit-for-Tat agents that start cooperating; note that they continue to coop-
erate. 2-TFT+D refers to two TFT agents with an agent that always defects; this leads
to system where the TFT agents collaborate with each other and defect against the
defecting agent. 2-TFT-E+D refers to two TFT agents with 10% exploration and an
always defect agent; this leads to a system where the TFT agents have some collabo-
ration but mostly defect. 2-TFT-E+C refers to two TFT agents with 10% exploration
and an agent that always cooperates; the TFT agents mostly collaborate, but there is
some defection.

Figure 1 show the results of four different sets of three agents with static
policies: three TFT agents, two TFT with 10% exploration (TFT-E) and one
always defect, two TFT agents and one always defect agent, and two TFT-E
agents and one always collaborate agent. The vertical axis refers to how often
the two or three TFT or TFT-E agents voted to collaborate, cooperation. The
TFT agents start off by collaborating, and the three TFT system continues to
collaborate. The two TFT agents with the always defect agent always collaborate
with each other, but (after an initial collaboration), always defect against the
always defect agent. This leads to a lower average payoff, but is still largely
collaborative. Both of these give horizontal lines in figure 1.

The TFT-E agents behave more stochastically, as sometimes they change
their decisions. The pair with the collaborative agent largely collaborate, and
the pair with the always defect agent largely defect. Below (figure 3) it is shown
that the ratio is 75% and 25%.

The second set of simulations uses neighbourhood voting, with each agent
getting one vote, and the results are shown in figure 2. The first set is three
TFT agents with 10% exploration. The remaining three sets are the same static
policies as figure 1. The TFT agents with the always defect initially vote to



collaborate, but then quickly move to always defect. They descend into the
Tragic Valley.

The agents with exploration have a great deal of randomness. When one
selects an unusual option, which happens 10% of the time for each, the overall
system moves away from attractor states. With other TFT agents, this means
the other agent will now become much more likely to vote this way in the next
round. So, these systems are always quite volatile. The three TFT-E agents
largely collaborate, the two TFT-T agents with the always collaborate agent
largely collaborate, and the two TFT TFT-T agents with the always defect
agent largely defect.

The TFT-E systems move up and down, with the pair with the collaborative
agent being more collaborative, and the pair with the defecting agent being less
collaborative. Below (figure 3) it is shown that the ratio is 80% and 20%.
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Fig. 2. Results from four 50 round tournaments with static agents with neighbour-
hood voting. 3-TFT-E refers to 3 Tit-for-Tat agents with 10% exploration that start
cooperating. 2-TFT+D refers to two TFT agents with an agent that always defects;
this quickly descends to no cooperation. 2-TFT-E+D refers to two TFT agents with
exploration and an always defect agent; this system has some cooperations but mostly
defects, but more than with pairwise voting. 2-TFT-E+C refers to two TFT exploration
agents and an agent that always cooperates; this cooperates about half the time.

The reason behind the difference between the two voting mechanisms is that
the reward space for each agent reinforces collaboration with with pairwise vot-
ing. Each agent can punish particular defectors and reward particular collab-
orators. This is why the agents can all get better results and ascend the Col-
laborative Hill. On the other hand, with neighbourhood voting, each agent can
only reward or punish in aggregate. The reward structure is that each agent



does better by defecting, and any collaboration tends to give worse immediate
results. This reward space and the agents’ ability to only weakly influence other
agents draws the agents into the Tragic Valley where agents do not cooperate.

Note that without exploration, the static policies move into an attractor
state. When all three agents are TFT, if they all collaborate, they will continue
to do so; not shown is the case when the initial choice is random. In the one of
eight times when all three agents defect, the system starts in the attractor state
when they all defect, and continue to defect. In the case where there is mixed
voting, the system will move about until it gets to one of the two attractor states.

Figure 3 compares the TFT-E agents with voting mechanisms. These are
similar to the runs in figures 1 and 2, but here the results reflect an average of 100
runs. It indicates that the pairwise voting strategy is more likely to collaborate
against always defect.
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Fig. 3. Results from the average of 100 50 round tournaments with four different sets
of agents. All the sets have two Tit-for-Tat (TFT) agents with 10% exploration. Two
have a third agent that always defects, and two have one that always cooperates. The
other variable is voting (pairwise or neighbourhood).

Adaptive exploration is when the TFT-E agent’s exploratory behaviour grad-
ually declines to 0% from 10%. The exploratory TFT agents decline to 0% with
the defecting partner, and grow to 100% when they have adaptive exploration.
See table 2 lines 1 and 2, where the exploration rate arrives at 0 at 300 rounds.

4 Reinforcement Learning Agents

Using standard Q-learning agents with only two rounds of history, agents be-
come cooperative with pairwise voting, and defect with neighbourhood voting.



Figure 4 shows this. Over time the neighbourhood voting descends toward 20%
cooperation while the pairwise voting agents remain at around 80%. The static
TFT agents follow their counterparts with learned policies.
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Fig. 4. Results from the average of 100 500 round tournaments with two different
sets of agents. Both sets are two Q-Learning agents with one Tit-for-Tat agent with
exploration. They differ by pairwise vs. neighbourhood voting, and the average of the
Q-Learning agents have a line, and the TFT-E agent has a line. This clearly shows the
pairwise agents remaining collaborative while the neighbourhood agents descend into
the Tragic Valley.

While all of the figures describe results based on collaboration, the agents
are deciding based on payoff. The best payoff an agent can receive in a three
agent system is 5; this is when the agent defects and both of the other agents
collaborate. In the system with neighbourhood voting, a Q-Learning agent and
two always collaborate agents, the Q-Learning learns to defect. At round 10,000,
the agent has an accumulated payoff of 4.84 while it almost never cooperates.

The simulations described above are based on three agent systems. The same
results largely apply to systems with more agents. Table 2 lines 3a to 5b show
the results of systems with 5, 7 and 25 agents. These all have one Q-Learning
agent and the rest are TFT agents. These lines show how the systems with



neighbourhood voting descend into the Tragic Valley, while the pairwise voting
systems ascend the Collaborative Hill.

Table 2. Example Results: Average Cooperation Value over last 50 rounds of run. The
second column is the length of the run.

Rounds Voting Agents 1 & 2 (N-1) Cooperation Agent 3 (N) Cooperation

1 200 Neighbour TFT-E Adapt 98.72% Collaborate 100.0%

2 200 Neighbour TFT-E Adapt 0.38% Defect 0.0%

3a 5000 Pairwise 4 TFT 99% Q-Learning 93%

3b 5000 Neighbour 4 TFT 68% Q-Learning 68%

4a 5000 Pairwise 6 TFT 98% Q-Learning 94%

4b 5000 Neighbour 6 TFT 56% Q-Learning 48%

5a 5000 Pairwise 24 TFT 99% Q-Learning 92%

5b 5000 Neighbour 24 TFT 20% Q-Learning 12%

6a 5000 Pairwise Q-Learning 64.1% Random 50%

6b 5000 Neighbour Q-Learning 19.6% Random 50%

7 5000 Neighbour Q Learning 71.8% TFT 72.4%

The authors were surprised that they have found no papers explicitly stating
that pairwise voting leads to largely collaborative performance.

5 Escaping the Tragic Valley with Enhanced
Reinforcement Learning

There are a wide range of adjustments to standard Q-Learning that enable an
agent in the N-IPD to be cooperative in many situations. Obviously, the agents
interacting with the Q-Learning agent matter. If all of the other agents are static
always defect agent, an extreme mechanism is needed. One such mechanism is
having the agent learn from cooperation rather than payoff. In this case, as it is
the only agent that can cooperate, then it should learn to cooperate. Including
overall cooperation being a component in the evaluation metric for learning will
be reasonably easy as the value for defecting and collaborating are the same (0).

Of course, what is usually desired is for the learning agent or agents to learn
to cooperate because that, in the long run, gives better payoff. Several additions
can help including optimistic initialisation, adaptive exploration, larger Q-tables,
and a discount factor that encourages long-term gains.

With optimistic initialisation, the agent’s Q-table is initialised with opti-
mistic values for unexplored state-action pairs [9]. This encourages the agent to
thoroughly explore its options before committing to a potentially suboptimal
defect-heavy strategy.

With adaptive exploration, the learning agent employs a decaying exploration
strategy. It explores more at the beginning of a tournament and gradually reduces
its random exploration rate to exploit the knowledge it has gained, allowing for
convergence to a stable policy.



Q-tables can, at least theoretically, be built to consider any number of past
states. Unfortunately, the size of the table grows exponentially in the number
of states with a large exponent. However, increasing from two states of history
to three states has enabled Q-Learning agents with a large discount factor to
cooperate in simulations with neighbourhood voting (see table 2 line 7).

The discount factor in standard Q-Learning considers longer-term gains the
closer it is to 1. So, having values such as 0.99 often lead to Q-Learning agents
that collaborate in neighbourhood voting N-IPD tasks.

Of course, the Q-Learning agent is more likely to collaborate when the other
agents are collaborative such as TFT agents and other Q-Learning agents. These
enhancements can transform an agent from a reactive learner into one that can
perceive and respond to the emergent dynamics of the system.

6 General Discussion

The simulations show that pairwise voting leads to a cooperative system, and
that neighbourhood voting leads to systems where the agents defect. This shows
the Tragic Valley (neighourhood voting) and the Collaborative Hill (pairwise
voting).

The difference stems from the reward space. If the agent knows every other
agent’s response, it will do better to select defect in almost every circumstance.
The real difference only occurs when the agent can look back. With the two per-
son version, TFT uses history from the last round to discourage defection. With
N > 2 agents, history reamins important to allow collaboration to develop. The
static policies that were explored, random, always defect, and always collaborate
do not change based on history and their decisions are unaffected by the other
agents.

Only TFT uses history, but it behaves differently with pairwise voting and
neighbourhood voting because of the reward space. Its history is affected by
other agents, individually in pairwise voting, and in aggregate for neighbourhood
voting. When it can choose to punish or reward each individually, it climbs the
Collaborative Hill. When it can only choose in aggregate, it can only reward or
punish in aggregate, so other agents will free ride, and the overall effect will be
a descent into the Tragic Valley.

The same is true with simple reinforcement learning agents. The reward space
moves these agents up the Collaborative Hill with pairwise voting, and down the
Tragic Valley with neighbourhood voting. Only when there is sufficient history
can the agents learn to collaborate with neighbourhood voting.

There are several things of interest to explore for future work. One is to
explore other games such as the volunteer’s dilemma [8]. Another is merely to
explore Q-Learning more rigorously. Of course, exploring other learning algo-
rithms is also of interest.



7 Conclusion

The N-person iterated prisoners’ dilemma poses two problems for collaboration.
These problems differ based on how the agents vote. If each agent votes has one
vote for each of the other agents, it is relatively easy for the agents to collaborate
and climb the Collaborative Hill. When each agent has only one vote, then it
is more difficult to choose collaborative policies due to the shape of the reward
space and the agents usually descend into the Tragic Valley.
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